United States Patent

US007805517B2

(12) 10) Patent No.: US 7,805,517 B2
Shim et al. (45) Date of Patent: Sep. 28, 2010
(54) SYSTEM AND METHOD FOR LOAD 7,363,378 B2* 4/2008 Holmes etal. 709/227
BALANCING A COMMUNICATIONS 7,475,108 B2* 1/2009 Di Giulio etal. 709/203
NETWORK 7,565,656 B2* 7/2009 Yamasaki etal. 718/104
2002/0038331 Al* 3/2002 Flavin 709/105
(75) Inventors: Choon B. Shim, ljamsville, MD (US); 2002/0090132 AL* 7/2002 Boneyk etal. 382/154
Lichua Xie, Gaithersburg, MD (US) 2002/0152305 AL* 10/2002 Jackson etal. 709/224
. . 2002/0174220 Al* 11/2002 Johnson 709/224
(73) Assignee: (C[}ssc)" Technology, Inc., San Jose, CA 2002/0194326 Al* 12/2002 Gold etal.oec........ 709/224
2003/0037145 AL* 2/2003 Fagancccoc.... 709/226
(*) Notice: Subject to any disclaimer, the term of this 2003/0046412 Al* 3/2003 Tsunodaetal. 709/229
patent is extended or adjusted under 35
U.S.C. 154(b) by 1426 days.
(21) Appl. No.: 10/941,070 (Continued)
OTHER PUBLICATIONS
(22) Filed: Sep. 15, 2004
Korzeniowski, Load Balancers: Balance the Trade-offs, Jan. 24,
(65) Prior Publication Data 2000, available at http://www.internetweek.com/indepth/
US 2006/0069776 A1 Mar. 30, 2006 indepth012400-1 htm.
(51) Int.Cl (Continued)
GOG6F 15/173 (2006.01) Primary Examiner—Hassan Phillips
(52) US.CL . 709/227; 709/226; 709/229; Assistant Examiner—Jonathan Bui
709/205 (74) Attorney, Agent, or Firm—Schwegman, Lundberg &
(58) Field of Classification Search 709/205, Woessner, P.A.
709/227, 226, 229
See application file for complete search history. &7 ABSTRACT
(56) References Cited

U.S. PATENT DOCUMENTS

The invention relates to a system and method for load-bal-
ancing multiple servers in a communications network.

5,805,824 A * 9/1998 Kappeccooeviiinnnn 709/242 Instead of using round robin or other predetermined scheme,
5,951,694 A * 9/1999 Choquier et al. 714/15 SIP messages are forwarded to one of multiple SIP servers
6,185,619 B1* 2/2001 Joffeetal.cee..n..... 709/229 according to a performance score that is calculated from
6,279,001 Bl1* 82001 DeBettencourtet al. 707/10 measured performance data. Advantageously, the disclosed
6,330,707 B1* 12/2001 Shinomiya et al. 716/14 system and method decreases signaling latency, improving
6,829,643 BL* 122004 Tobeetal. - 7097226 overall communications speed. Moreover, where perfor-
7,050,963 B2* 5/2006 Flavin ~e 703727 mance data indicates that a SIP server has failed, the perfor-
7,103,809 B2* 9/2006 Schlangen 714/47 mance score for the failed SIP server is zero, and the load
7,123,700 BI* 10/2006 Weaver et al. - 379/88.19 balancer will not forward SIP messages to the failed SIP
7,292,531 B1* 11/2007 Hill 370/230.1 . . .
7,305,562 BL* 122007 Bianco etal. 713/186 Server. System uptime is also improved.
7,308,475 B1* 12/2007 Pruittetal.c...c.. 709/203
7,340,598 B2* 3/2008 Esfahany 713/100 22 Claims, 15 Drawing Sheets
306A
302
SIP Server
Source 306B
Device 1 Load Balancer
308
% SIP Server
102 ﬁ
306C
04 S Performance Server SIP Server Destination
206D Device
SIP Server H
106

US 7,805,517 B2
Page 2

U.S. PATENT DOCUMENTS

2003/0051187 Al* 3/2003 Mashayekhi etal. 714/4
2004/0024879 Al* 2/2004 Dingman et al. e 709/227
2004/0073639 Al* 4/2004 Basogluetal. ... 709/223
2004/0103194 Al* 5/2004 Islam et al. 709/225

2004/0153549 Al* 8/2004 Naito etal. 709/228
2004/0215787 Al* 10/2004 Gibsonetal. 709/227
2005/0027862 Al* 2/2005 Nguyenetal. 709/225
2005/0038890 Al* 2/2005 Masudaetal. 709/224
2005/0038989 Al* 2/2005 Esfahany 713/100
2005/0066328 Al* 3/2005 Lamcccooevivniiinnnnns 718/100
2005/0216729 Al* 9/2005 Joelsetal. 713/153
2005/0268155 Al* 12/2005 Mashayekhi etal. 714/4
2005/0268156 Al* 12/2005 Mashayekhi etal. 714/4
2007/0160033 Al* 7/2007 Bozinovskietal. 370/352
2007/0260676 Al* 11/2007 Bozinovskietal. 709/203
2009/0024425 Al* 1/2009 Calvertcooovvvriinnnnn. 705/7

OTHER PUBLICATIONS

Performance Technologies, Tutorial Interworking Switched Circuits
and Voice-Over-IP Networks, (2001), available at: http://www.pt.
com/tutorials/iptelephony/tutorial_voip_ sip.html.

Network World Fusion, SIP (Session Initiation Protocol) available at:
http://’www.nwiusion.com/details/500.html (first published in Net-
work World Apr. 15, 2002).

Radvision, Session Initiation Protocol (SIP) (2000), available at:
http://www.sipcenter.com/sip.nsf/html/WEBB5YFPVR/SFILE/
SIPOverview.pdf.

Cisco Systems, High-Availability Solutions for SIP Enabled Voice-
over-IP Networks (2002) available at: http://www.cisco.com/en/US/
tech/tk652/td70 1/technologies_ white__paper09186a00800a9818.
shtml.

Vinod Bhat, Voice-Over-IP—The SIP Way, Apr. 2001, available at:
hittp://www.tecs.com/0_whitepapers/htdocs/VoiceOverIP-
TheSIPway.pdf.

Giesa, et al., Building A Strong Foundation For SIP-Based Networks,
Feb. 2002, available at: http://www.tmcnet.com/it/0202/02021f5.
htm.

Anderson et al., Performance Soars, Features Vary, Network World,
Jun. 14, 1999, available at: http://www.nwfusion.com/reviews/
0614rev.html.

* cited by examiner

US 7,805,517 B2

Sheet 1 of 15

Sep. 28, 2010

U.S. Patent

a21Aa(Qq
uoneunsaqg

(LY Joud)

l 'Old

s

901

FEINETS
diS

140)°

ao1Aa(g
82inog

s

c0l

US 7,805,517 B2

Sheet 2 of 15

Sep. 28, 2010

U.S. Patent

(v Joud)

A

Ol

20 >
20
¢
okg <
| kg
JJI0A >
< I0A
>
A0
20 >
' Sudury <
Suidury
< AIAU] >
Surka],
< AU
901 124! <01
901AJ(] UOIBUNSA(] IAIAS JIS IOTA([2INOY

US 7,805,517 B2

Sheet 3 of 15

Sep. 28, 2010

U.S. Patent

80¢€

901

i

¢ Ol

JIAIRS dIS

ao1na(Qq
uoneunsaq

aooe

ylomieN

JAIS IS

090¢ M

I9AIDS IS

g90¢ M

JoAIaS 9ouBWIONad

I9AI0S dIS

Vva0¢ M

iaouejeg peon

i

a01n8(Qq

92In0g

s

AU

US 7,805,517 B2

Sheet 4 of 15

Sep. 28, 2010

U.S. Patent

¥ Old

80V M

Aand
9OUBULIOL®d JOAIDS

v 1

uoneindwo)
R peoT Jonag
90v + +
R Bugnoy dIs
1481%

I,

cov R

Buipsemio diS

US 7,805,517 B2

Sheet 5 of 15

Sep. 28, 2010

U.S. Patent

816G

91§

clLS

)senbay d|S
ay] doiqg

19MISS dIS PeIOs|ag
8yl o] 1sanboy

dIS 3yl plemiod

906

¢ Ol

19AIBS dIS V 9(8S

L
S)sIX3
uoISsag
dIS

14%°]

ainjeubis
uoISSag J0BIIX]

805

SIBMIBS dIS
[IV Ol 1senbay
dIS 8yl 3INoyYy

12
uonensibay =

}senbay $0S

1sanbay d|S aAI809y ~ 200

US 7,805,517 B2

Sheet 6 of 15

Sep. 28, 2010

U.S. Patent

5
O
O
LL

019

L+(=!

PETVEIN

<7 103)98

43¢

0=l ~~ 909
X J8boju)
wopuey sjelauss [~ 09

e 209

~
)

FIG.7

.

-
.

\\\a\\\
i

US 7,805,517 B2

Sheet 8 of 15

Sep. 28, 2010

U.S. Patent

8 Ol

(t+) W+ (0 -1)aloot="s K

808 — X

z18
oL8
908
WM TN pesd ¥08

s D

U.S. Patent Sep. 28, 2010 Sheet 9 of 15 US 7,805,517 B2

FIG. 9

Performance
Score 902

US 7,805,517 B2

Sheet 10 of 15

Sep. 28, 2010

U.S. Patent

VL0 — XN

910!

d3AIgo3d
vivd

A

Lot

NMOQA NSd

NSd 110d S
9001

A

I=N13S
$00}

¢001L

0101

US 7,805,517 B2

Sheet 11 of 15

Sep. 28, 2010

U.S. Patent

L1 Ol

lanes d|IS
g90€ —
POLL —[-
W3y J19d
— ST ryq
cobi WY 119
v90E ™]
JOAIBS d|S

AETNEIN
QouemLIOfDd [~
hehlici e |
peo] — 208

¢l Ol

US 7,805,517 B2

Jdd 3U} s8yoe) 19AIag aoueWIONad 8y). SNz

A

uoneoyddy 1aouejeg peo ayy
0} SOlISIE)S SOUBULIOHSd SPUSS JOAIS doueuLIONdd ayL [N\ 7,7}

A

Juaby ay) wouy A|dey e s8sS8001d puUe SBAI909Y Ddd dul ~

Sheet 12 of 15

[

Jueby 8y} 0} 1s9nbay ,eled 199, B SANSS| Odd BUL I~ gpz,

A

Sep. 28, 2010

9poN oy1oadg
8y} uo Butuuny Jusby ue o} uoyosuuo) e suadO Ddd a4l L/oom_‘

A

SPON d10ads ay) 40j (Odd) udlD ddueLLIOpad
Jusjsislad e sa)eal)) JaAIag aduewlopad ay| Z/ v0zZL

A

SpPON 211038dg e 10 uoneslddy Jaduejeg peo
B WoOJj }sanbay eleq e SeA190ay JsAIag aouewIoled Y [

U.S. Patent

US 7,805,517 B2

Sheet 13 of 15

Sep. 28, 2010

U.S. Patent

8cel

<

¢l Ol

lanlag aouewIOpad

0] UONEDIIION aNSS|

é
ploysauy L
pauiwislapald
speoox3 eleqg

eleqg

h 4

pesy

*

ocel

souewWIOLad RO,

lajjonuo)
UOIEJUNION |jeal]

I~ zzel

t

Janiag aouewlopad
0} Eje(] SoUBLLIO J RN
} BjeQ aduBuLIOpad uinjay 0zel
A
oLel
199G 9dUBLLIONDd WO W g
isnbay ,ejeq 109, 9Ale09y
AejeQ
A /L/
8LEl A
103[qQ Jaxiom
maN ajeal) [\ gie eleqg
9oUBWIOHSY
ayoe)n
A
1senbay 80¢€lL 4
uoI}OdLU0Y) Byeq
anIa09Y 90UBULIOUDd |e
viel Jayjes g0

A

19008

*

*

Jajjonuo)

jensg alearny NN zie uonoajjoD ajea1d N \yoc|

*

e 4019

US 7,805,517 B2

Sheet 14 of 15

Sep. 28, 2010

U.S. Patent

orvr\LMW\

80T 10101

FETNETS

vl Old

vrvr\\MW\

11010l

BETNETS

suoydyog 1~ 80V}

suoydyos

[CCTT01I01
Jaoue|eg
peo

Ju Ju Jm Ju }
3332
pe Ju Jo Ju }

civl

oLvi

|

T~ 90Vl

e s b)
323>
o o Ju Ju }

_

US 7,805,517 B2

Sheet 15 of 15

Sep. 28, 2010

U.S. Patent

Gl Old

6 8¢ GZY'G6 68 8021010l
Ll 6l €210l c6 €L i0L0l 1%
G Ll 888°901 88 80C'1°0L°01
Gl .8 Z19°/G [€Lc’1'0L 0L €
Ll 9/ 6¥G'GZl 0 802°'L°0L°0L
€ 9¢ 0cv'ell G6 €LZ’1'01L0l ¢
Ll 8. 268°GQ ¢ 80C'L'0L 0L
6 0. 9G¥'09 2 €LZ2'1'0L°01 L
P91I9]9S 9102g (gM)Aiowapy | uonezinn
sawi} S 19A18S oleuadg
10 # aosuewIOMdd 994 Nndod

7

¢Sl

7

0LS1

7

80§61

w

9061

7

Y0G1

7

c0Gl

US 7,805,517 B2

1

SYSTEM AND METHOD FOR LOAD
BALANCING A COMMUNICATIONS
NETWORK

FIELD OF INVENTION

The invention relates generally to the field of communica-
tions. More specifically, but not by way of limitation, the
invention relates to a system and method for load balancing a
Session Initiation Protocol (SIP) network for applications
such as Voice Over Internet Protocol (VoIP) communications
and Instant Messaging (IM).

BACKGROUND

Systems and methods are generally known for effecting
signaling (control) data on a communications network. FIG.
1 is a block diagram of a functional architecture of a commu-
nications network, according to the prior art. As shown in
FIG. 1, a SIP server 104 provides communications services
such as routing SIP signaling messages between a source
device 102 and a destination device 106. Source device 102
and/or destination device 106 may be, for example, a SIP-
enabled telephone, a SIP PC (Personal Computer) client, a
SIP-enabled gateway, or other device configured to originate
or terminate a SIP session. FIG. 2 is a message sequence
diagram of communications with a SIP server, according to
the priorart. In particular, FIG. 2 illustrates signaling between
the functional blocks in FIG. 1 using request and response
message types: Invite and Bye are request messages; Ringing
and OK are response messages.

In typical signaling applications, multiple SIP servers may
be used (instead of a single SIP server 104) where the com-
munications system also includes multiple sources and/or
destination devices. But systems with multiple SIP servers
have many disadvantages. For example, known systems may
not be able to establish, modify, or terminate at least some SIP
sessions where one or more SIP servers have failed. More-
over, requests may be received at SIP servers according to
round-robin assignments or theoretical server capacity,
resulting in inefficient processing of SIP messages. What is
needed is a system and method for performance-based load
balancing of SIP servers that can also adapt to one or more
failed SIP servers in the system.

SUMMARY OF THE INVENTION

The invention relates to a system and method for load-
balancing multiple servers in a communications network. SIP
messages are forwarded to one of multiple SIP servers
according to a performance score that is calculated from
measured performance data from each ofthe multiple servers.

Embodiments of the invention provide a method for load-
balancing a Session Initiation Protocol (SIP) network, includ-
ing: receiving a SIP request from a source device; selecting
one of a plurality of SIP servers based on a plurality of
performance scores, each of the plurality of performance
scores associated with a corresponding one of the plurality of
SIP servers; and forwarding the SIP request to the selected
SIP server.

Embodiments of the invention provide a method for poll-
ing a SIP server for performance data, including: receiving a
data request for the performance data in a performance server;
creating a persistent performance client in the performance
server; opening a connection to an agent running on the SIP
server; and issuing a request from the persistent performance
client to the agent.

—

0

20

25

30

35

40

45

50

55

60

65

2

Embodiments of the invention provide a method respon-
sive to a data request, including: creating a first controller, the
first controller being configured to gather and cache perfor-
mance data; and creating a server socket, the server socket
being configured to determine whether a connection request
has been received, the server socket being further configured
to transmit the performance data.

Embodiments of the invention provide a method for load-
balancing a Session Initiation Protocol (SIP) network, includ-
ing: receiving a SIP request; generating a routing request
based on the SIP request; generating a performance score
request for each of a plurality of SIP servers based on the
routing request; generating a performance data query to each
of'the plurality of SIP servers based on the performance score
request; and receiving the performance data query in an agent
in each of the plurality of SIP servers.

Embodiments of the invention provide a communication
system, including: an interface to a source device; a load
balancer coupled to the interface; a plurality of Session Ini-
tiation Server (SIP) servers coupled to the load balancer; and
a performance server coupled to the load balancer and the
plurality of SIP servers, the performance server configured to
collect performance data from the plurality of SIP servers, the
load balancer configured to calculate a performance score for
each of the plurality of SIP servers based on the performance
data, the load balancer further configured to direct a SIP
request received from the first interface to a selected one of
the plurality of SIP servers based on the performance score
for each of the plurality of SIP servers.

Advantageously, the disclosed system and method
decreases signaling latency, improving overall communica-
tions speed. Moreover, where performance data indicates that
a SIP server has failed, the performance score for the failed
SIP server is zero, and the load balancer will not forward SIP
messages to the failed SIP server. So system uptime is also
improved.

The features and advantages of the invention will become
apparent from the following drawings and detailed descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are described with reference
to the following drawings, wherein:

FIG. 1 is a block diagram of a functional architecture of a
communications network, according to the prior art;

FIG. 2 is a message sequence diagram of communications
with a SIP server, according to the prior art;

FIG. 3 is a block diagram of a functional architecture of a
communications network, according to an embodiment of the
invention;

FIG. 4 is a block diagram of a functional architecture of the
SIP load balancer in FIG. 3, according to an embodiment of
the invention;

FIG. 5 is a flow diagram of a routing/forwarding process,
according to an embodiment of the invention;

FIG. 6 is a flow diagram of a server selection process,
according to an embodiment of the invention;

FIG. 7 is a graphical illustration of a server selection plot,
according to an embodiment of the invention;

FIG. 8 is a flow diagram of a process for calculating server
load, according to an embodiment of the invention;

FIG. 9 is a graphical illustration of server load scores,
according to an embodiment of the invention;

FIG. 10 is a flow diagram of a server performance query
process, according to an embodiment of the invention;

US 7,805,517 B2

3

FIG. 11 is a block diagram of a functional architecture for
collecting performance data, according to an embodiment of
the invention;

FIG. 12 is a flow diagram of a polling process from the
perspective of a performance server, according to an embodi-
ment of the invention;

FIG. 13 is a flow diagram for a polling process from the
perspective of a performance agent on a SIP server, according
to an embodiment of the invention;

FIG. 14 is a block diagram of a test bed functional archi-
tecture, according to an embodiment of the invention; and

FIG. 15 is an illustration of a test results table, according to
an embodiment of the invention.

DETAILED DESCRIPTION

This section provides a top-level functional architecture,
exemplary selection, routing and forwarding processes, a pro-
cess for calculating a performance score, a process for col-
lecting performance data, and a summary of empirical analy-
sis. Sub-headings are used below for organizational
convenience. The disclosure of any particular feature is not
necessarily limited to any particular section, however.

Top Level Functional Architecture

FIG. 3 is a block diagram of a functional architecture of a
communications network, according to an embodiment of the
invention. As shown in FIG. 4, a functional architecture
includes source device 102, load balancer 302, performance
server 304, SIP servers 306A, 306B, 306C, and 306D, a
network 308, and a destination device 106. The load balancer
302 is coupled to the source device 102, the performance
server 304, and each of the SIP servers 306A, 3068, 306C,
and 306D. The performance server 405 is also coupled to each
of the SIP servers 306A, 306B, 306C, and 306D. Further,
network 308 is coupled to each of the SIP servers 306A,
306B, 306C, and 306D and the destination device 106.

The load balancer 302, performance server 304, SIP serv-
ers 306A, 3068, 306C, and 306D may each include a proces-
sor, each of the processors being configured to read and
execute instructions from a processor-readable storage
medium. In one variation, the load balancer 302 and the
performance server 304 share a processor. The storage
medium may be or include, for instance, a hard drive, Ran-
dom Access Memory (RAM), or a Computer Disc (CD) Read
Only memory (ROM). The load balancer 302, performance
server 304, SIP servers 306A, 306B, 306C, and 306D may
each be configured, for example, with a server operating
system, examples of which include Linux™ or Windows™
server operating systems. SIP servers 306A, 3068, 306C and
306D may each be configured as SIP proxy servers.

The load balancer 302 is configured to receive a SIP mes-
sage from source device 102. Informed by the performance
server 304, the load balancer 302 is configured to forward the
SIP message from the source device 102 to a selected one of
the SIP servers 306A, 3068, 306C, and 306D. In turn, the
selected SIP server establishes a session between the source
device 102 and the destination device 106.

Variations of the functional architecture illustrated in FIG.
3 are also contemplated. For example, although four SIP
servers are illustrated in FIG. 3, a functional architecture may
have two or more SIP servers. Further, in a general case, a
functional architecture may include multiple source devices
and/or multiple destination devices. Moreover, switches or
servers configured for H.323 or other IP telephony or other
communications protocol could be used in the alternative to,

20

25

30

40

45

50

55

60

65

4

or in combination with, the illustrated SIP servers 306A,
306B, 306C, and 306D, according to design choice.

FIG. 4 is a block diagram of a functional architecture of the
SIP load balancer in FIG. 3, according to an embodiment of
the invention. As shown therein, an exemplary load balancer
302 includes SIP forwarding module 402, SIP routing module
404, server load computation module 406, and server perfor-
mance query module 408. The SIP routing module 404 is
coupled to the SIP forwarding module 402 and the server load
computation module 406. The server load computation mod-
ule 406 is coupled to the SIP routing module 404 and the
server performance query module 408. The server perfor-
mance query module 408 is coupled to the server load com-
putation module 406. In the illustrated embodiment, each of
the couplings described above are two-way couplings.

The SIP forwarding module 402 is configured to receive a
SIP request from the source device 102 and send an inquiry to
the SIP routing module 404 to determine a SIP server recipi-
ent of the SIP message. Once the SIP forwarding module 402
receives the SIP server selection from the SIP routing module
404, the SIP forwarding module 402 is configured to forward
the SIP request to the selected SIP server (e.g., one of SIP
servers 306A, 3068, 306C, and 306D).

In response to a routing inquiry from the SIP forwarding
module 402, the SIP routing module 404 is configured to
request performance scores from the server load computation
module 406, to select a SIP server (e.g., one of SIP servers
306A, 306B, 306C, and 306D) based on the performance
scores, and forward the selection to the SIP forwarding mod-
ule 402.

The server load computation module 406 is configured to
receive a request for performance scores from the SIP routing
module 404, request performance data from the server per-
formance query module 408, calculate a performance score
for each of the SIP servers 306A, 306B, 306C, and 306D
based on the performance data, and provide the performance
scores to the SIP routing module 404.

The server performance query module 408 is configured to
receive a request for performance data from the server load
computation module 406, solicit performance data from the
performance server 304, and forward the performance data to
the server load computation module 406.

Variations to the functional architecture illustrated in FIG.
4 are possible. For example, any of the functional capability
illustrated therein and described above may be combined in
functional groupings different from that illustrated in FIG. 4
and described above.

In operation, data may be cached or otherwise stored at
various locations of the functional architecture. For instance,
in response to a request for performance scores, server load
computation module 406 may provide most recent perfor-
mance scores to the SIP routing module 404 without having to
first initiate a request for server performance data from the
server performance query module 408. Likewise, in response
to arequest from the server load computation module 406, the
server performance query module 408 may provide most
recent server performance data to the server load computation
module 406 prior to sending a request to the performance
server 304.

Embodiments of processes performed by the functional
components of the load balancer 302 are further described
with reference to FIGS. 5-10 below.

Selection, Routing, and Forwarding Processes

FIG. 5 is a flow diagram of a routing/forwarding process,
according to an embodiment of the invention. As shown
therein, the process begins by receiving a SIP request in step

US 7,805,517 B2

5

502. The process then advances to conditional step 504 to
determine whether the received request is a registration
request. Where the result of conditional step 504 is in the
affirmative, the process advances to step 506 to route the SIP
request to all SIP servers. In an alternative embodiment, if the
result of conditional step 504 is in the affirmative, the process
routes the SIP request to a registrar server (step not shown).

On the other hand, where the result of conditional step 504
is in the negative, the process is promoted to step 508 to
extract a session signature from the SIP request in step 508.
The execution of step 508 may vary according to proprietary
SIP implementation schemes. Then, in conditional step 510,
the process determines whether a SIP session exists (e.g.,
based on the session signature). If it is determined in condi-
tional step 510 that a SIP session exists (e.g., the SIP request
is associated with an existing SIP session), then the process
advances to step 512 to forward the SIP request to the (pre)
selected SIP server associated with the existing SIP session.
Accordingly, a SIP request associated with an active session
is simply routed to the appropriate SIP server.

Ifit is determined in conditional step 510 that a SIP session
does not exist (e.g., the request is associated with a new SIP
session), then the process selects a SIP server in step 514 and
advances to conditional step 516 to determine whether the
selected SIP server has been found. Where the result of con-
ditional step 516 is in the negative, the process advances to
step 518 to drop (e.g., terminate processing of) the SIP
request. Where the result of conditional step 516 is in the
affirmative, the process advances to step 512 to forward the
SIP request to the (newly) selected SIP server. Accordingly, a
SIP request associated with a new session requires selection
of a SIP server in step 514 before being forwarded to the
selected SIP server in step 512. The load balancer 302 pref-
erably maintains a list of active SIP sessions to execute con-
ditional step 510 described above.

Variations to the process illustrated in FIG. 5 are contem-
plated. For example, conditional step 504 and associated step
506 are optional. In addition, conditional step 514 may be
considered a portion of selection step 516.

FIG. 6 is a flow diagram of a server selection process,
according to an embodiment of the invention. In other words,
FIG. 6 is one embodiment of selection step 514. As shown
therein, the process begins in step 602, then advances to step
604 to generate a random integer X, where 0<X=2XS,. 2§, is
the sum of performance scores for all SIP servers (shown
graphically on integer axis 702 of FIG. 7).

Next, j is set equal to zero in step 606, and conditional step
608 tests whether (Sy+ . . . +5,_)<X=(Se+...85). 84, S, ,
and S, are the performance scores for servers 0 (S0), j-1, and
j, respectively. If the result of conditional step 608 is negative,
then the value of j is incremented by 1 in step 610, and the
process returns to conditional step 608. If the result of con-
ditional step 608 is positive, then the process selects server j
in step 612.

Accordingly, the server selection process 514 illustrated in
FIG. 6 tests one or more servers in steps 606, 608, and 610 to
associate random integer X with a particular server j. The
exemplary process illustrated in FIG. 6 can be further under-
stood with reference to the server selection plot illustrated in
FIG. 7.

FIG. 7 is a graphical illustration of a server selection plot,
according to an embodiment of the invention. As shown in
FIG. 7, data for each of five servers, S0, S1, S2, S3, and S4 are
plotted on integer axis 702 and score axis 704. The integer
axis 702 is divided into N partitions sequentially assigned to

20

25

30

35

40

45

50

55

60

65

6

servers S0, S1, S2, S3, and S4. For each server, the size of the
partition along integer axis 702 is proportional to the perfor-
mance score.

FIG. 7 further illustrates the position on the integer axis
702 for arandom integer X generated in step 604. It should be
apparent that the larger the performance score for a server, the
larger the partition size, and the more likely that the random
integer X will be associated with a server having a relatively
larger performance score. It would be determined in step 608
(with reference to integer axis 702) that (So+S,)<X=(Sy+S, +
S,). Thus, server S2 would be selected.

The performance score S, associated with server S3 is
represented by a single point on the integer axis 702. Note that
the selection criteria in conditional step 608 prevents selec-
tion of a server having a performance score of zero. For
example, if random integer X were equal to S +S,+S,, the
point where it is indicated in FIG. 7 that the performance
score for server S3 is equal to zero, server S2 would be
selected by the process depicted in FIG. 6.

As described above, calculation of a performance score for
each of the SIP servers is a prerequisite to selecting a SIP
server in step 514.

Calculating a Performance Score

FIG. 8 is a flow diagram of a process for calculating server
load (or performance score), according to an embodiment of
the invention. As shown therein, the process begins in step
802, then advances to step 804 to read each of several param-
eters. For example, in step 804, the process reads C,, which is
the Computer Processing Unit (CPU) usage, expressed as a
percentage, forthe i” SIP server. The process alsoreads C,, .,
which is the maximum CPU usage, also expressed as a per-
centage. Also in step 804, the process may read M,, which is
the amount of available memory of the i SIP server,
expressed as a percentage of total memory. Further, in step
804, the process reads M,,,,,,, which is the minimum required
memory (again, expressed as a percentage of total memory).
The process may also read or calculate 2M,, which is the sum
of the available memory for all SIP servers with a non-zero
performance score. Finally, in step 804, the process may read
W, and W, which are the predetermined weight of the CPU
usage percentage parameter and the predetermined weight of
the memory availability parameter, respectively. In one
embodiment, C,,, 15 95%,M,, s 10 Mbytes,and W,and W,
are both set equal to 1.

After reading the parameters in step 804, the process
advances to conditional step 806 where it is determined
whether C, is less than or equal to C,,,,,. Where the result of
conditional step 806 is in the affirmative, the process
advances to step 810 to determine whether M, is greater or
equalto M,,,,. Where the result of either conditional step 806
or conditional step 810 are in the negative, the process termi-
nates in step 808, where a performance score S, is set equal to
zero. Where the result of conditional step 810 is in the affir-
mative, the process advances to step 812 to calculate the
performance score S, given by: S,=100(W,(1-C)+W M,/
ZM,)/W,+W,). Advantageously, scoring sensitivity can be
adjusted by varying the predetermined weights W, and W,
according to application requirements.

FIG. 9 is a graphical illustration of server performance
scores 902, according to an embodiment of the invention. As
shown, the highest performance score, 100%, is the case
where CPU usage (C,) is 0%, and memory availability (M,) is
100%. As CPU and/or memory resources become less avail-
able, the performance score drops. Where the CPU usage (C,)
is 100%, and/or where the memory availability (M,) is 0%, the
performance score is equal to zero. In the illustrated embodi-

US 7,805,517 B2

7

ment, W, and W, are both set equal to 1. In alternative
embodiments, the scoring solution can be made more sensi-
tive to either memory availability or CPU utilization by
changing the value of W, and/or W, either off-line or in-situ.

In alternative embodiments of the invention, the above
calculation may be performed without a CPU usage param-
eter, or without a memory availability parameter. Moreover,
in other embodiments, performance scores may be calculated
based on network utilization, call volume, failure statistics
(such as indications of server down status, or abnormal SIP
session terminations), and/or other factors either separately or
combined with CPU usage and/or memory availability so that
multiple SIP servers can be load balanced based on one or
more performance metrics, and/or so that fault tolerance can
be provided to a SIP-based application.

Collecting Performance Data

FIG. 10 is a flow diagram of a server performance query
process, according to an embodiment of the invention. As
shown in FIG. 10, the process begins in step 1002, and then
advances to step 1004 to set a parameter N equal to 1. Next,
the process advances to step 1006 to poll a server PSN (the
Nth SIP server). Then, the process advances to conditional
step 1008 to determine whether the data being polled in step
1006 has been received. Where the result of conditional step
1008 is in the affirmative, the process advances to step 1012 to
determine whether the query process of FIG. 10 is completed.
If the result of conditional step 1012 is in the affirmative, the
process terminates in step 1016.

Where the result of conditional step 1008 is in the negative,
the process associates PSN with a down condition, and the
process continues at conditional step 1012. Where the result
of conditional step 1012 is in the negative, the process
advances to step 1014 where the server number is incre-
mented by a 1 and the process returns to polling step 1006.

Accordingly, the process illustrated in FIG. 10 can be
executed by the server performance query module 408 to
collect server performance data for each of N SIP servers.
FIGS. 11-13 illustrate one embodiment for retrieving the
performance data being polled in step 1006.

FIG. 11 is a block diagram of a functional architecture for
collecting performance data, according to an embodiment of
the invention. As shown in FIG. 11, performance server 304 is
coupled to performance agent 1102 in SIP server 306 A and to
performance agent 1104 in SIP server 306B.

FIG. 12 is a flow diagram of a polling process from the
perspective of a performance server, according to an embodi-
ment of the invention. As shown in FIG. 12, the process
begins in step 1202 where performance server 304 receives a
SIP request from load balancer 302 for a specific SIP server
(e.g., SIP server 306A or SIP server 306B) or other node.
Next, the process advances to step 1204 where the perfor-
mance server 304 creates a persistent performance client
(PPC) for the specified node. Next, the process advances to
step 1206 where the PPC opens a connection to an agent (e.g.,
performance agent 1102 or performance agent 1104) running
on the specified node. Then, in step 1208, the PPC issues a
“get data” request to the agent. Next, in step 1210, the PPC
receives and processes a reply from the agent. Then, in step
1212, the performance server 304 sends a performance sta-
tistics to the load balancer 302. Finally, in step 1214 the
performance server 304 caches the PPC.

Thus, in one embodiment of the invention, performance
data is collected by one or more performance servers using
agents that are embedded in each of the SIP servers.

FIG. 13 is a flow diagram for a polling process from the
perspective of a performance agent on a SIP server, according

20

25

30

35

40

45

50

55

60

65

8

to an embodiment of the invention. As illustrated in FIG. 13,
upon receipt of an initiation in step 1302, the process launches
three separate and distinct processes: a create collection con-
troller step 1304, a create server socket step 1312, and a create
notification controller step 1322.

Inresponse to the create collection controller step 1304, the
process advances to gather performance data in step 1306,
then cache performance data in 1308. After step 1308, the
process may advance to a delay step 1310 before returning to
step 1306 to gather additional performance data.

Subsequent to creating the server socket in step 1312, the
process advances to conditional step 1314 to determine
whether a connection request has been received from the
performance server 304. Where the result of conditional step
1314 is in the affirmative, the process advances to step 1316 to
create a new worker object. Next, in step 1318, the process
receives a “‘get data” request from the performance server
304. Then, in step 1320, the process returns the performance
data (which was gathered in step 1306 and cached in step
1308) to the performance server 304. Where the result of
conditional step 1314 is in the negative, the process returns to
conditional step 1314.

In response to the creation of a notification controller in
step 1322, the process advances to step 1324 to read the
performance data cached in step 1308. Next, the process
advances to conditional step 1326 to determine whether the
performance data exceeds a predetermined threshold. For
example, a CPU utilization threshold may be set at 85%, and
a memory availability threshold may be set at 10 MB. Where
the result of step 1326 is in the affirmative, the process issues
a notification to the performance server 304 in step 1328.
Where the data does not exceed a pre-determined threshold in
conditional step 1326, the process returns to step 1324 to read
performance data.

Variations to the process illustrated in FIG. 13 are contem-
plated. For example, the implementation of delay step 1310 is
optional. In addition, where the result of conditional step
1314 is in the negative, an optional delay step could be
inserted before returning to conditional step 1314.

Empirical Analysis

Embodiments of the invention described above were tested
using the architecture illustrated in FIG. 14. The test produced
the results summarized in FIG. 15.

FIG. 14 is a block diagram of a test bed functional archi-
tecture, according to an embodiment of the invention. As
shown, SIP telephones 1402 and 1404, softphones 1406 and
1408, Load balancer 1412, and SIP proxy servers 1414 and
1416 were coupled via link 1410. SIP telephones 1402 and
1404 were 3Com® SIP telephones, and softphones 1406 and
1408 were implemented with Microsoft Windows® Messen-
ger running on laptop personal computers.

To initialize the test, SIP telephones 1402 and 1404, and
softphones 1406 and 1408 were each registered with SIP
proxy servers 1414 and 1416. Server 1414 was assigned
address 10.10.1.213, and server 1416 was assigned address
10.10.1.208. In addition, phones 1402, 1404, 1406, and 1408
were each configured with load balancer 1412 address
10.10.1.221 as the outbound proxy address. A software tool
was used to generate a controlled load on each of the SIP
proxy servers 1414 and 1416, while signaling messages were
generated using phones 1402, 1404, 1406, and 1408. Log
messages in load balancer 1412 were later reviewed to deter-
mine the number of times that each SIP proxy server 1414 and
1416 were selected.

US 7,805,517 B2

9

FIG. 15 is an illustration of a test results table, according to
an embodiment of the invention. As shown therein, the test
included four scenarios, 1-4.

In scenario 1, server 1414 and server 1416 were lightly
loaded; the result was that the performance scores were simi-
lar, and load balancer 1412 selected servers 1414 and 1416
more or less equally. In scenario 2, server 1414 was heavily
loaded, and server 1416 was lightly loaded; the result was that
server 1416 was selected 17 out of 20 times. In scenario 3,
server 1414 was lightly loaded, and server 1416 was heavily
loaded; the result was that server 1414 was selected 15 out of
20times. In scenario 4, server 1414 and server 1416 were both
heavily loaded; the result was that servers 1414 and 1416
were selected more or less equally.

CONCLUSION

The invention described above thus overcomes the disad-
vantages of known systems and methods by balancing sig-
naling load amongst multiple servers based on performance
scores calculated from measured performance data. While
this invention has been described in various explanatory
embodiments, other embodiments and variations can be
effected by aperson of ordinary skill in the art without depart-
ing from the scope of the invention. For example, the systems
and methods described herein could be applied to different
signaling protocols or communication environments.

We claim:
1. A method for load-balancing a Session Initiation Proto-
col (SIP) network, comprising:

receiving a SIP request from a source device;

selecting one of a plurality of SIP servers including a first
SIP server based on a plurality of performance scores,
each of the plurality of performance scores determined
as a function of a plurality of weighted performance
parameters of a corresponding one of the plurality of STP
servers, the selecting including setting the performance
score of the first SIP server equal to a predetermined
value upon determination that a CPU percentage usage
parameter of the first SIP server is greater than a first
predetermined threshold or that a memory availability
parameter of the first SIP server is less than a second
predetermined threshold, the selecting including auto-
matically generating a random integer and comparing
the random integer with a sum of two or more of the
performance scores for corresponding SIP servers, the
selecting including detecting failures of the SIP servers
using the performance scores, the selecting further
including preventing the first SIP server from being cho-
sen as a selected SIP server to perform the SIP request
when the performance score of the first SIP server is the
predetermined value; and

forwarding the SIP request to the selected SIP server.

2. The method of claim 1, further comprising:

before the selecting, determining whether the SIP request
is a registration request; and

if the SIP request is a registration request, routing the SIP
request to all SIP servers.

3. The method of claim 1, further comprising:

before the selecting, extracting a session signature from the
SIP request;

determining whether a SIP session exists based on the
extracted session signature;

ifthe SIP session exists, forwarding the SIP request to a SIP
server associated with the existing SIP session.

20

25

30

35

40

45

50

55

60

65

10

4. The method of claim 1, wherein the random integer
having a value greater than zero, the random integer having a
value less than or equal to a sum of performance scores for the
plurality of SIP servers.

5. The method of claim 4 further including identifying a
server j satisfying the condition (So+ . . . +S,_)<X=
(Se+ - . . +S)), where S, S, |, and S, are the performance
scores for servers 0, j—1, and j, respectively, and where X is
the random integer.

6. The method of claim 1, wherein determining the plural-
ity of performance scores includes:

assigning a first weight to the CPU percentage usage

parameter; and

assigning a second weight to the memory availability

parameter.

7. The method of claim 6, wherein the determining the
plurality of performance scores includes solving S =100(W,,
(1-C)+W M,/ ZM,)/ W+ W), where:

S, is the performance score of an ith SIP server;

W, is the first weight assigned to the CPU percentage usage

parameter;

W, is the second weight assigned to the memory availabil-

ity parameter;

C, is a CPU percentage usage of an ith SIP server;

M, is an amount of available memory of the ith SIP server;

and

2M, is a sum of available memory of the plurality of SIP

servers having non-zero performance scores.

8. The method of claim 1, wherein at least one of the
plurality of performance scores is based, at least in part, on a
call volume for each of the SIP servers.

9. The method of claim 1, wherein at least one of the
plurality of performance scores is based, at least in part, on
data associated with the failure of at least one of the plurality
of SIP servers.

10. A method for polling a Session Initiation Protocol (SIP)
server for performance data, comprising:

receiving, in a performance server, a data request for the

performance data of the SIP server, the performance data
to be assigned a weight and used in determining a per-
formance score of the SIP server, the performance score
to detect a failure of the SIP server, the performance
score of the SIP server to be set equal to a predetermined
value upon determination that a CPU percentage usage
parameter of the SIP server is greater than a first prede-
termined threshold or that a memory availability param-
eter of the SIP server is less than a second predetermined
threshold;

creating a persistent performance client in the performance

server;

opening a connection to an agent running on the SIP server;

and

issuing a request from the persistent performance client to

the agent;

wherein the performance score of the SIP server is to be

added with performance scores for one or more other
SIP servers to generate a sum of two or more of the
performance scores for corresponding SIP servers, the
sum to be compared with an automatically generated
random integer to select an available SIP server to ser-
vice an SIP request; and

wherein the SIP server is prevented from being selected as

the available SIP server when the performance score of
the SIP server is the predetermined value.

US 7,805,517 B2

11

11. The method of claim 10, further comprising:

receiving a reply from the agent in the performance server,

the reply responsive to the request from the persistent
performance client;

transmitting the reply from the performance server; and

caching the persistent performance client in the perfor-

mance server.

12. A method responsive to a data request, comprising:

creating, in a Session Initiation Protocol (SIP) server, a first

controller, the first controller being configured to gather
and cache performance data, the performance data to be
assigned a weight and used in determining a perfor-
mance score of the SIP server, the performance score to
detect a failure of the SIP server, the performance score
of'the SIP server to be set equal to a predetermined value
upon determination that a CPU percentage usage param-
eter ofthe SIP server is greater than a first predetermined
threshold or that a memory availability parameter of the
SIP server is less than a second predetermined threshold;
and

creating a server socket, the server socket being configured

to determine whether a connection request has been
received, the server socket being further configured to
transmit the performance data;

wherein the performance score of the SIP server is to be

added with performance scores for one or more other
SIP servers to generate a sum of two or more of the
performance scores for corresponding SIP servers, the
sum to be compared with an automatically generated
random integer to select an available SIP server to ser-
vice an SIP request; and

wherein the SIP server is prevented from being selected as

the available SIP server when the performance score of
the SIP server is the predetermined value.

13. The method of claim 12, further comprising creating a
second controller, the second controller configured to read the
performance data, the second controller further configured to
determine whether the performance data exceeds a predeter-
mined threshold, the second controller further configured to
issue a notification if the performance data exceeds a prede-
termined threshold.

14. A method for load-balancing a Session Initiation Pro-
tocol (SIP) network, comprising:

receiving a SIP request;

generating a routing request based on the SIP request;

generating a request for a performance score for each of a

plurality of SIP servers including a first SIP server based
on the routing request, each performance score to be
determined as a function of a plurality of weighted per-
formance parameters of a corresponding one of the plu-
rality of SIP servers, the performance score to detect a
failure of its corresponding SIP server, the performance
score of the first SIP server to be set equal to a predeter-
mined value upon determination that a CPU percentage
usage parameter of the first SIP server is greater than a
first predetermined threshold or that a memory availabil-
ity parameter of the first SIP server is less than a second
predetermined threshold;

generating a performance data query to each of the plural-

ity of SIP servers based on the request for the perfor-
mance score; and

receiving the performance data query in an agent in each of

the plurality of SIP servers;

wherein a sum of two or more performance scores for

corresponding SIP servers are to be compared with an
automatically generated random integer to select an
available SIP server to service the SIP request; and

20

25

30

35

40

45

50

55

60

65

12

wherein the first SIP server is prevented from being
selected as the available SIP server when the perfor-
mance score of the first SIP server is the predetermined
value.

15. The method of claim 14, further comprising:

responding with performance data in response to the per-

formance data query;
calculating the performance score for each of the plurality
of SIP servers based on the performance data;

selecting a SIP server from the plurality of SIP servers
based on the performance score for each of the plurality
of SIP servers; and

forwarding the SIP request to the selected SIP server.

16. A machine-readable medium having instructions
stored thereon for execution by a processor to perform a
method comprising:

receiving a SIP request from a source device;

selecting one of a plurality of SIP servers including a first

SIP server based on a plurality of performance scores,
each of the plurality of performance scores determined
as a function of a plurality of weighted performance
parameters of a corresponding one of'the plurality of SIP
servers, the selecting including setting the performance
score of the first SIP server equal to a predetermined
value upon determination that a CPU percentage usage
parameter of the first SIP server is greater than a first
predetermined threshold or that a memory availability
parameter of the first SIP server is less than a second
predetermined threshold, the selecting including auto-
matically generating a random integer and comparing
the random integer with a sum of two or more of the
performance scores for corresponding SIP servers, the
selecting including detecting failures of the SIP servers
using the performance scores, the selecting further
including preventing the first SIP server from being cho-
sen as a selected SIP server to perform the SIP request
when the performance score of the first SIP server is the
predetermined value; and

forwarding the SIP request to the selected SIP server.

17. A machine-readable medium having instructions
stored thereon for execution by a processor to perform a
method comprising:

receiving, in a performance server, a data request for the

performance data of a Session Initiation Protocol (SIP)
server, the performance data to be assigned a weight and
used in determining a performance score of the SIP
server, the performance score to detect a failure of the
SIP server, the performance score of the SIP server to be
set equal to a predetermined value upon determination
that a CPU percentage usage parameter of the SIP server
is greater than a first predetermined threshold or that a
memory availability parameter of the SIP server is less
than a second predetermined threshold;

creating a persistent performance client in the performance

server;

opening a connection to an agent running on the SIP server;

and

issuing a request from the persistent performance client to

the agent;

wherein the performance score of the SIP server is to be

added with performance scores for one or more other
SIP servers to generate a sum of two or more of the
performance scores for corresponding SIP servers, the
sum to be compared with an automatically generated
random integer to select an available SIP server to ser-
vice an SIP request; and

US 7,805,517 B2

13

wherein the SIP server is prevented from being selected as
the available SIP server when the performance score of
the SIP server is the predetermined value.

18. A machine-readable medium having instructions
stored thereon for execution by a processor to perform a
method comprising:

creating, in a Session Initiation Protocol (SIP) server, a first

controller, the first controller being configured to gather
and cache performance data, the performance data to be
assigned a weight and used in determining a perfor-
mance score of the SIP server, the performance score to
detect a failure of the SIP server, the performance score
of'the SIP server to be set equal to a predetermined value
upon determination that a CPU percentage usage param-
eter ofthe SIP server is greater than a first predetermined
threshold or that a memory availability parameter of the
SIP server is less than a second predetermined threshold;
and

creating a server socket, the server socket being configured
to determine whether a connection request has been
received, the server socket being further configured to
transmit the performance data;

wherein the performance score of the SIP server is to be
added with performance scores for one or more other
SIP servers to generate a sum of two or more of the
performance scores for corresponding SIP servers, the
sum to be compared with an automatically generated
random integer to select an available SIP server to ser-
vice an SIP request; and

wherein the SIP server is prevented from being selected as
the available SIP server when the performance score of
the SIP server is the predetermined value.

19. A machine-readable medium having instructions
stored thereon for execution by a processor to perform a
method comprising:

receiving a Session Initiation Protocol (SIP) request;

generating a routing request based on the SIP request;

generating a request for a performance score for each of a
plurality of SIP servers including a first SIP server based
on the routing request, each performance score to be
determined as a function of a plurality of weighted per-
formance parameters of a corresponding one of the plu-
rality of SIP servers, the performance score to detect a
failure of its corresponding SIP server, the performance
score of the first SIP server to be set equal to a predeter-
mined value upon determination that a CPU percentage
usage parameter of the first SIP server is greater than a
first predetermined threshold or that a memory availabil-
ity parameter of the first SIP server is less than a second
predetermined threshold;

generating a performance data query to each of the plural-
ity of SIP servers based on the request for the perfor-
mance score; and

receiving the performance data query in an agent in each of
the plurality of SIP servers;

wherein a sum of two or more performance scores for
corresponding SIP servers are to be compared with an
automatically generated random integer to select an
available SIP server to service the SIP request; and

20

25

30

35

40

45

50

60

14

wherein the first SIP server is prevented from being
selected as the available SIP server when the perfor-
mance score of the first SIP server is the predetermined
value.

20. A communication system, comprising:

an interface to a source device;

a load balancer coupled to the interface;

a plurality of Session Initiation Server (SIP) servers
coupled to the load balancer, the plurality of SIP servers
including a first SIP server; and

a performance server coupled to the load balancer and the
plurality of SIP servers, the performance server config-
ured to collect performance data from the plurality of
SIP servers, the load balancer configured to assign a
weight to the performance data and calculate a plurality
of performance scores, each of the plurality of perfor-
mance scores associated with one of the plurality of SIP
servers, the plurality of performance scores based on the
weighted performance data, the performance score of
the first SIP server to be set equal to a predetermined
value upon determination that a CPU percentage usage
parameter of the first SIP server is greater than a first
predetermined threshold or that a memory availability
parameter of the first SIP server is less than a second
predetermined threshold;

wherein the load balancer is configured to automatically
generate a random integer and compare the random inte-
ger with a sum of two or more of the performance scores
for corresponding SIP servers to select one of the plu-
rality of SIP servers, the load balancer further configured
to direct a SIP request received from the first interface to
the selected one of the plurality of SIP servers, the load
balancer further configured to detect failures of the SIP
servers using the performance scores, the load balancer
further configured to prevent the first SIP server from
being chosen as the selected SIP to perform the SIP
request when the performance score of the first SIP
server is the predetermined value.

21. The system of claim 20, wherein the load balancer

includes:

a SIP forwarding module configured to forward the SIP
request to the selected one of the plurality of SIP servers;

a SIP routing module coupled to the SIP forwarding mod-
ule, the SIP routing module configured to select the
selected one of the plurality of SIP servers based on the
performance score for each of the plurality of SIP serv-
ers;

a server load computation module coupled to the SIP rout-
ing module, the server load module configured to calcu-
late the performance score for each of the plurality of
SIP servers based on the collected performance data;
and

a server performance query module coupled to the server
load computation module, the server performance query
module configured to fetch the performance data from
the performance server.

22. The system of claim 20, wherein each of the plurality of
SIP servers include a performance agent, the performance
agent configured to provide the performance data to the per-
formance server.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,805,517 B2 Page 1 of 1
APPLICATION NO. :10/941070

DATED : September 28, 2010

INVENTORC(S) : Choon B. Shim et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 10, line 25, in Claim 7, delete “C;” and insert -- C; --, therefor.

In column 14, line 8, in Claim 20, delete “Server” and insert -- Protocol --, therefor.

Signed and Sealed this

Thirtieth Day of November, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

